2022 |
Stability-aware simplification of curve networks |
Neveu, William |
Bessmeltsev, Mikhail |
2023 |
Deep learning on signals : discretization invariance, lossless compression and nonuniform compression |
Demeule, Léa |
Berseth, Glen |
2024 |
Intrinsic exploration for reinforcement learning beyond rewards |
Creus-Castanyer, Roger |
Berseth, Glen |
2014 |
Modeling High-Dimensional Audio Sequences with Recurrent Neural Networks |
Boulanger-Lewandowski, Nicolas |
Bengio, Yoshua; Vincent, Pascal |
2016 |
Designing Regularizers and Architectures for Recurrent Neural Networks |
Krueger, David |
Bengio, Yoshua; Memisevic, Roland |
2016 |
Structured prediction and generative modeling using neural networks |
Kastner, Kyle |
Bengio, Yoshua; Memisevic, Roland |
2023 |
Learning and planning with noise in optimization and reinforcement learning |
Thomas, Valentin |
Bengio, Yoshua; Le Roux, Nicolas |
2019 |
Natural image processing and synthesis using deep learning |
Ganin, Iaroslav |
Bengio, Yoshua; Lempitsky, Victor |
2019 |
On challenges in training recurrent neural networks |
Anbil Parthipan, Sarath Chandar |
Bengio, Yoshua; Larochelle, Hugo |
2003 |
Quelques modèles de langage statistiques et graphiques lissés avec WordNet |
Jauvin, Christian |
Bengio, Yoshua; Langlais, Philippe |
2020 |
Towards better understanding and improving optimization in recurrent neural networks |
Kanuparthi, Bhargav |
Bengio, Yoshua; Lajoie, Guillaume |
2004 |
Réduction de dimension pour modèles graphiques probabilistes appliqués à la désambiguïsation sémantique |
Boisvert, Maryse |
Bengio, Yoshua; Kegl, Balazs |
2009 |
Modèle informatique du coapprentissage des ganglions de la base et du cortex :
l'apprentissage par renforcement et le développement de représentations |
Rivest, François |
Bengio, Yoshua; Kalaska, John Francis |
2021 |
Locality and compositionality in representation learning for complex visual tasks |
Sylvain, Tristan |
Bengio, Yoshua; Hjelm, Rex Devon |
2000 |
Architecture et programme d'entraînement pour agents qui apprennent par renforcement |
Desaulniers, Julien |
Bengio, Yoshua; Gendreau, Michel |
2020 |
Méta-enseignement : génération active d’exemples par apprentissage par renforcement |
Larocque, Stéphanie |
Bengio, Yoshua; Frejinger, Emma |
2014 |
Distributed conditional computation |
Léonard, Nicholas |
Bengio, Yoshua; Courville, Aaron |
2018 |
Representation Learning for Visual Data |
Dumoulin, Vincent |
Bengio, Yoshua; Courville, Aaron |
2014 |
Leveraging noisy side information for disentangling of factors of variation in a supervised setting |
Carrier, Pierre Luc |
Bengio, Yoshua; Courville, Aaron |
2016 |
Sequential modeling, generative recurrent neural networks, and their applications to audio |
Mehri, Soroush |
Bengio, Yoshua; Courville, Aaron |
2014 |
Deep learning of representations and its application to computer vision |
Goodfellow, Ian |
Bengio, Yoshua; Courville, Aaron |
2017 |
Learning visual representations with neural networks for video captioning and image generation |
Yao, Li |
Bengio, Yoshua; Courville, Aaron |
2013 |
Improving sampling, optimization and feature extraction in Boltzmann machines |
Desjardins, Guillaume |
Bengio, Yoshua; Courville, Aaron |
2017 |
Exploring Attention Based Model for Captioning Images |
Xu, Kelvin |
Bengio, Yoshua; Courville, Aaron |
2017 |
Feedforward deep architectures for classification and synthesis |
Warde-Farley, David |
Bengio, Yoshua |
2007 |
Modèles Pareto hybrides pour distributions asymétriques et à queues lourdes |
Carreau, Julie |
Bengio, Yoshua |
2020 |
Entity-centric representations in deep learning |
Assouel, Rim |
Bengio, Yoshua |
2020 |
A deep learning theory for neural networks grounded in physics |
Scellier, Benjamin |
Bengio, Yoshua |
2009 |
Sequential Machine learning Approaches for Portfolio Management |
Chapados, Nicolas |
Bengio, Yoshua |
2018 |
Reparametrization in deep learning |
Dinh, Laurent |
Bengio, Yoshua |
2011 |
Réseaux de neurones à relaxation entraînés par critère d'autoencodeur débruitant |
Savard, François |
Bengio, Yoshua |
2009 |
Échantillonnage dynamique de champs markoviens |
Breuleux, Olivier |
Bengio, Yoshua |
2018 |
Auto-Encoders, Distributed Training and Information Representation in Deep Neural Networks |
Alain, Guillaume |
Bengio, Yoshua |
2012 |
Algorithmes d'apprentissage pour la recommandation |
Bisson, Valentin |
Bengio, Yoshua |
2019 |
Learning competitive ensemble of information-constrained primitives |
Sodhani, Shagun |
Bengio, Yoshua |
2003 |
Généralisation d'algorithmes de réduction de dimension |
Paiement, Jean-François |
Bengio, Yoshua |
2018 |
Analyzing the benefits of communication channels between deep learning models |
Lacaille, Philippe |
Bengio, Yoshua |
2016 |
Bidirectional Helmholtz Machines |
Shabanian, Samira |
Bengio, Yoshua |
2020 |
Advances in deep learning methods for speech recognition and understanding |
Serdyuk, Dmitriy |
Bengio, Yoshua |
2015 |
Advances in scaling deep learning algorithms |
Dauphin, Yann |
Bengio, Yoshua |