Passer au contenu

/ Département d'informatique et de recherche opérationnelle

Je donne

Rechercher

Thèses et mémoires

Des thèses et mémoires de nos étudiants sont conservés et consultables dans Papyrus, le dépôt institutionnel de l'Université de Montréal.

 

 

For a detailed search
Visit Papyrus
Date Sort by date in descending order Title Sort by title in descending order
2021-02 Randomized Quasi-Monte Carlo Methods for Density Estimation and Simulation of Markov Chains
2021-03 Locality and compositionality in representation learning for complex visual tasks
2021-03 A study of virtual reality-mediated affective state and cognitive decline in Alzheimer’s disease
2021-03 Extending domain-specific modeling editors with multi-touch interactions
2021-04 Efficient frequency-space methods for light transport caching
2021-04 Continuous coordination as a realistic scenario for lifelong learning
2021-04 On quantifying the value of simulation for training and evaluating robotic agents
2021-04 Estimation de pose 2D par réseau convolutif
2021-04 Système intelligent pour le suivi et l’optimisation de l’état cognitif
2021-05 IIRC : Incremental Implicitly-Refined Classification
2021-05 Méthodes de décomposition basées sur la relaxation lagrangienne : cas du problème de transport avec coûts fixes
2021-05 Quasi second-order methods for PDE-constrained forward and inverse problems
2021-05 Hamiltonian Monte Carlo and consistent sampling for score matching based generative modeling
2021-05 Virtual reality therapy for Alzheimer’s disease with speech instruction and real-time neurofeedback system
2021-05 Extended distribution effects for realistic appearance and light transport
2021-05 Typer a de la classe : le polymorphisme ad hoc dans un langage avec des types dépendants et de la métaprogrammation
2021-05 Pattern-based refactoring in model-driven engineering
2021-06 Image forgery detection using textural features and deep learning
2021-06 Self-disclosure model for classifying & predicting text-based online disclosure
2021-06 Self-supervision for data interpretability in image classification and sample efficiency in reinforcement learning