Passer au contenu

/ Département d'informatique et de recherche opérationnelle

Je donne

Rechercher

Thèses et mémoires

Des thèses et mémoires de nos étudiants sont conservés et consultables dans Papyrus, le dépôt institutionnel de l'Université de Montréal.

 

 

For a detailed search
Visit Papyrus
Date Sort by date in ascending order Title Sort by title in ascending order
2024 The equivalence of contrastive learning and graph convolution in collaborative filtering
2024 Towards efficient large language models : training low-bitwidth variants and low-rank decomposition of pretrained models
2024 Beyond the status quo in deep reinforcement learning
2024 Intrinsic exploration for reinforcement learning beyond rewards
2024 Enhancing risk-based authentication with federated learning : introducing the F-RBA framework
2024 Searching for Q*
2024 Self-supervision for reinforcement learning
2024 The shifting landscape of data : learning to tame distributional shifts
2024 Dichotomy(?) of fairness and efficiency
2024 Self-play for human-agent communication
2024 FACTS-ON : Fighting Against Counterfeit Truths in Online social Networks : fake news, misinformation and disinformation
2024 Identifying latent structures in data
2024 Beyond top line metrics : understanding the trade-off between model size and generalization properties
2024 Enhancing agent learning through world dynamics modeling
2024 Enhancing factuality and coverage in summarization via referencing key extracted content
2024 Aligning language models to code : exploring efficient, temporal, and preference alignment for code generation
2024 Détection universelle des images synthétiques générées par les modèles de diffusion
2024 Quotient Types in Typer
2024 Building intuitive reinforcement learning algorithms
2024 Embedding cultural diversity in prototype-based recommender systems
2024 Modélisation de l'activité cérébrale mesurée par imagerie par résonance magnétique fonctionnelle dans une tâche de jeu vidéo par des modèles d'apprentissage profond
2024 Scalable and robust fog-computing design & dimensioning in dynamic, trustless smart cities
2024 Performative prediction : expanding theoretical horizons
2024 On PI controllers for updating lagrange multipliers in constrained optimization
2024 Evaluating approaches to solving proportional sentence analogies
2024 Microservices identification in existing applications using meta-heuristics optimization and machine learning
2024 Dynamic capacities and priorities in stable matching
2024 Advancing adversarial robustness with feature desensitization and synthesized data
2024 Parameter, experience, and compute efficient deep reinforcement learning
2024 Learning representations for reasoning : generalizing across diverse structures
2024 An exploration of approximation chains
2024 Sur la génération d'exemples pour réduire le coût d'annotation
2024 Metaheuristics for vehicle routing problems : new methods and performance analysis
2024 Beyond the horizon : improved long-range sequence modeling, from dynamical systems to language
2024 Distributed fog load balancing to support IoT applications : a reinforcement learning approach
2024 Rule-based data augmentation for document-level medical concept extraction
2024 Generative flow networks : theory and applications to structure learning
2024 A LiDAR and Camera Based Convolutional Neural Network for the Real-Time Identification of Walking Terrain
2024 Geometric-aware models for protein design
2023 Finer grained evaluation methods for better understanding of deep neural network representations