Passer au contenu

/ Département d'informatique et de recherche opérationnelle

Je donne

Thèses et mémoires

Des thèses et mémoires de nos étudiants sont conservés et consultables dans Papyrus, le dépôt institutionnel de l'Université de Montréal.

 

 

For a detailed search
Visit Papyrus
Date Sort by date in ascending order Title Sort by title in ascending order
2023 Predicting stock market trends using time-series classification with dynamic neural networks
2023 Analysis of the human corneal shape with machine learning
2023 Training large multimodal language models with ethical values
2023 Towards adaptive deep model-based reinforcement learning
2023 Neurobiologically-inspired models : exploring behaviour prediction, learning algorithms, and reinforcement learning
2023 Reasoning with structure : graph neural networks algorithms and applications
2023 Deep networks training and generalization: insights from linearization
2023 Learned interpreters : structural and learned systematicity in neural networks for program execution
2023 Multi-task learning for joint diagnosis of CNVs and psychiatric conditions from rs-fMRI
2023 La reconnaissance automatique des brins complémentaires : leçons concernant les habiletés des algorithmes d'apprentissage automatique en repliement des acides ribonucléiques
2023 Calibrated uncertainty estimation for SLAM
2023 Rethinking continual learning approach and study out-of-distribution generalization algorithms
2023 Conditional generative modeling for images, 3D animations, and video
2023 Learning and planning with noise in optimization and reinforcement learning
2023 Towards combining deep learning and statistical relational learning for reasoning on graphs
2023 Automatic symbolic melody generation from lyrics
2023 Représentations géométriques de détails fins pour la simulation d’éclairage
2023 Sur l’application de la structure de graphes pour le calcul automatique de nombres de reproduction dans les modèles à compartiments déterministes
2023 Towards an extension of causal discovery with generative flow networks to latent variables models
2023 Efficient reformulations for deterministic and choice-based network design problems