Experts en : Base de données temporelle
BACON, Pierre-Luc
Professeur adjoint
Spécialisé dans l’apprentissage par renforcement, Pierre-Luc Bacon s’intéresse plus particulièrement au problème d’apprentissage de représentations pour la prise de décisions séquentielles ayant des conséquences à long terme ainsi qu'à ses ramifications en optimisation hiérarchique.
BENGIO, Yoshua
Professeur titulaire
- Apprentissage automatique
- Apprentissage de représentations
- Apprentissage profond
- Base de données temporelle
- Intelligence artificielle
- Modèles probabilistes
- Modèles statistiques
- Réseaux de neurones
- Vision par ordinateur
- Science des données
- Traitement automatique du langage naturel (TALN)
- Modélisation
- COVID19
Mon but à long terme est de comprendre l'intelligence; comprendre ses principes sous-jacents nous donnerait accès à l'intelligence artificielle (IA), et je crois que les algorithmes d'apprentissage sont essentiels dans cette quête. Les algorithmes d'apprentissage pourraient donner aux ordinateurs la capacité de capter des connaissances opérationnelles (pas nécessairement sous forme symbolique/verbale) à partir d'exemples. Une machine ayant appris de telles connaissances pourrait ainsi faire des prédictions ou des classifications correctes sur de nouveaux cas, généraliser à de nouvelles situations. La recherche dans ce domaine a été couronnée de nombreux succès au cours des trois dernières décades, et elle est maintenant appliquée dans de nombreux domaines de la science et de la technologie.
Parmi les applications les plus connues on inclut les engins de recherche, le traitement du langage naturel, la traduction automatique, la reconnaissance de la parole, la vision par ordinateur, et la fouille de données. Mes recherches à long terme portent sur l'apprentissage de représentations, afin de dépasser des limites théoriques et pratiques des algorithmes (linéaires ou à noyau) qui ont dominé l'apprentissage machine jusqu'à récemment. Pour contourner ces limitations, une nouvelle approche appelée apprentissage profond a été développée ici et dans quelques laboratoires depuis 2006 et a connu des succès fracassants au cours des dernières années.